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Solutions of the half-projected Hartree-Fock equations, given in a previous paper, have been 
obtained for some small molecules containing first-row atoms. In many cases, it is possible to find 
several solutions, the existence of which can be explained by symmetry arguments. 
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1. Introduction 

In order to introduce more flexibility into the usual one-determinant restricted 
Hartree-Fock (RHF) method, it has been suggested that the electrons of opposite 
spin be assigned to spatially different orbitals [1, 2], giving rise to the unrestricted 
Hartree-Fock (UHF) function: 

T = l a l b l a z b 2  . . .aNNNI.  (1)  

However, this function is not a spin eigenfunction and often the best orbitals, 
found by minimizing the total energy, are found to be RHF orbitals. To remedy 
these deficiencies of the UHF method, L6wdin [3] has suggested projecting the 
UHF function to give a spin eigenfunction of the desired multiplicity, the resulting 
function being known as the projected Hartree-Fock (PHF) function. Unfor- 
tunately, this method, which has been applied only to very small systems [4-8], 
becomes far too complex for larger systems due to the large numbers of Slater 
determinants involved in the PHF function. Another two-determinantal function 
has been suggested by Smeyers and Doreste-Suarez [8]. This function given by 

~" = la l b l a 2b 2 . . .aubN[ + ]b l cq b 2ct2 . . .b ~ N  I (2) 

has been shown to contain only states with even spin quantum number, and is 
called the half-projected Hartree-Fock (HPHF) function since it may be expressed 
as the UHF function, Eq.(1), projected on the subspace with even spin quantum 
number [8]. We have recently shown [9] that it is possible to obtain the optimum 
orbitals for the HPHF function by the iterative solution of two eigenvalue prob- 
lems in the same manner as the normal UHF method, and have written a computer 
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program to do so. We have also shown [9] how it is possible to obtain the expecta- 
tion value of the total spin operator ( (y2 ) ) ,  and the natural orbitals (NO) for the 
function. The NOs, which occur in pairs whose occupation numbers add to 2, 
may be expressed in terms of the corresponding orbitals which have the property 
[2, 9] 

( ailbj) = )~ifij" (3) 

Thus, for NO's X and r/we have 

Iz )  = la,) + Ib,) (4) 
In>--la,>-lb,>. 

In this paper we present the results of HPHF calculations performed on some 
small molecules containing first row atoms, using a minimal basis of Slater orbi- 
tals, each orbital being expanded in terms of four Gaussian functions [10]. The 
role of symmetry is discussed in some detail with reference to the results obtained. 

It may be noted at this point that the starting orbitals {a} and {b}, for our 
HPHF calculations are taken to be the RHF orbitals, one or more of the occupied 
orbitals (c/) having been perturbed by mixing with one or more of the virtual 
orbitals (Ck) according to 

I.,>=lc,>+ Z p,klc > 
Ib,>=lc,>- EP,klCk). (5) 

where the P~k are mixing coefficients, usually having the value 0.2. 

2. Results 

2.1. Water 

Four solutions have been obtained for this molecule. Table 1 gives the atomic 
co-ordinates, initial orbital mixing, total energies and (6 e2) values for the four 
calculations, the correlation energies (CE) obtained being 0.57, 0.53, 0.38 and 
0.03 eV respectively. These may be compared with an estimated CE of 9.90 eV 
[11]. For all the solutions (~2) is found to be small. In Table 2 we give the NO's 

Table 1, Initial orbital mixing and calculated total energies 
and expectation values of  5 °2 for H2 Oa 

Calculation Orbitals Total  (502) 
Number  Mixed Energy (a.u.) 

1 extensive -75 .5177  0.006 
2 3a 1 - 4 a  I --75.5160 0.034 
3 3al - 2 b  2 -75 .5106  0.027 
4 lb 1 - 4 a  1 - 75.4979 0.000 

a The co-ordinates, in bohr, are H1 ( -1 .1073 ,  1.4301, 
0.0); H2 ( 1.1073, -1 .4301,  0.0); O (0.0, 0.0, 0.0) and 
the R H F  energy is - 75.4967 a.u. 
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Table 2. Natura l  orbitals obtained from calculations on H 2 0  
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2 Value for 
Calcula- N.O. Corres- Atomic Orbital  Coefficients 
tion Occupation ponding 
Number  Number  Orbitals H l ( l s )  H2(ls) O(ls)  O(2s) O(2px) O(2pr) O(2p~) 

1 1.999 0.993 0.52 -0 .05  - 0 . 0 6  0.15 - 0 . 4 9  0.40 
1.976 0.807 0.12 - 0 . 5 5  0.02 0.01 0.48 0.46 
0.024 0.807 - 0 . 0 5  1.16 0.09 -0 .61  0.52 0.71 
0.001 0.993 - 1.16 0.01 - 0 . 0 9  0.64 - 0 . 5 4  0.68 

2 1.989 0.933 0.32 0.32 - 0 . 0 4  0.02 - 0 . 7 2  
1.984 0.883 - 0 . 4 4  0.44 -0 .61 
0.016 0.883 0.84 - 0 . 8 4  . . . .  0.99 
0.011 0.933 0.80 0.80 0.12 - 0 . 8 8  0.75 - 

3 1.991 0.933 0.32 0.32 -0 .01  - 0 . 1 5  - 0 . 7 6  
1.989 0.906 - 0 . 4 4  0.44 -0 .61 
0.011 0.906 - 0 . 8 0  - 0 . 8 0  - 0 . 1 2  0.88 - 0 . 7 5  - 
0.009 0.933 0.84 - 0 . 8 4  0.99 

4 1.998 0.937 - - 
0.002 0,937 0.80 0.80 0.12 - 0 , 8 8  0.74 - 

1.00 

with occupation numbers different from 2, from which it is possible to obtain the 
corresponding orbitals if desired, using Eq.(4). The NO's resulting from calcula- 
tion (1) are not symmetry orbitals whereas those from the other three calculations 
are. Thus the lowest energy HPHF solution for H20  yields non-symmetry NO's. 
It is also the solution with the least spin contamination, and corresponds to the 
situation where most of the observed CE is obtained from a single O - H  bond. 
Solution (2) gives equal correlation in both of the O-H bonds simultaneously, the 
essentially RHF lb 2 orbital being correlated by another b 2 orbital. The main 
correlation in solution (3) arises from the correlation of the essentially RHF lb 2 
orbital by an orbital of a I symmetry, yielding correlation across the xz plane. The 
fourth calculation yields correlation out of the molecular plane, where the lbl 
RHF orbital is correlated by an a 1 orbital. This type of correlation is obviously 
not well recovered when a minimal basis set is used since there is only one atomic 
orbital combination of bl symmetry. 

2.2. Carbon Monoxide 

The results obtained for CO are given in Table 3, the bond length chosen for 
the calculations being 2.13 bohr. Table 3 gives the initial orbital mixing and cal- 
culated total energies and (5  e2) values for the four solutions obtained, the cal- 
culated CE's being 0.27, 0.45, 0.78 and 0.82 eV respectively. Once again no serious 
spin contamination is noted in the solutions. Solution (1) gives correlation of the 
lone pair electrons, the essentially RHF 5~r orbital being correlated by a single 
re-type orbital. The other three solutions give re-electron correlation, the first 
two yielding symmetry NO's with the third, which gives the maximum CE, yielding 
non-symmetry orbitals. Solutions (2) and (3) both give equal amounts of correla- 
tion in the two rc-orbitals. However, reference to the corresponding orbitals 
shows that in solution (3) both orbitals of the {a} set are localised on one atom, 
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Table 3. Initial orbital mixing and calculated total energies 
and expectation values of ~2 for CO a 

Calculation Orbitals Total (~9 °2) 
Number Mixed Energy (a.u.) 

1 5c--2~x - 112.0373 0.018 
2 l~x--2~y -112.0437 0.051 
3 4e-6a - 112.0557 0.093 
4 extensive - 112.0571 0.033 

a The RHF energy is - 112.0271 a.u. 

and both  {b} orbitals on the other atom, whereas in solution (2) the two {a} 
orbitals are localised one on each atom, and similarly for the {b} orbitals. Thus 
solution (3) yields the lower energy due to the more favourable exchange energy. 
In solution (4) the CE gained is concentrated in one of the rc directions, there thus 
exists a plane of symmetry for the NO ' s  in this case. 

2.3. Ammonia and Methane 

Two solutions have been obtained for NH3 which differ in energy by about  
0.01 eV only. The lowest energy solution has non-symmetry NO's  and corresponds 
to the situation where correlation in one N H bond is higher than in the other 
two. The higher energy solution which has symmetry NO's  gives a CE of 0.50 eV 
and ( ~ 2 )  value of 0.042. 

In the case of  C H ,  we have obtained only one solution, which give symmetry 
NO's ,  a CE of 0.54 eV, and ( • a )  value of 0.053. 

3. Discussion 

The existence of multiple H P H F  solutions may be understood in terms of the 
symmetry of the molecule. Let us write the H P H F  function of Eq.(2) in the form: 

F = d E% Fb + % Fo]. (6) 

Here ~u and F b represent Slater determinants of N electrons in the sets of  orbitals 
{a} and {b} respectively, the bar indicates that all electrons have beta spin, and o~ 
completes the antisymmetrisation of all 2N electrons. We also define the functions 
~b 1 and ~b 2 from: 

Fa=41+q52  (Ta) 

Fb = ~bl - ~b2. (7b) 

In the starting orbitals, formed from the R H F  solution according to Eq.(5), 
the functions ~b 1 and q~2 have symmetry properties determined by the symmetries 
of  the orbitals i and k which are mixed. It  is convenient to distinguish four 
possibilities: 

(I) I f  i and k are non-degenerate orbitals of the same symmetry, ~b I and 4>2 
will both be totally symmetric. The {a} and {b} orbitals will both be sets of  sym- 
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metry orbitals, and the H P H F  wavefunction will have the full symmetry of the 
molecule. 

(II) If  i and k are non-degenerate orbitals of different symmetry, q~l will be 
totally symmetric, and q52 will transform according to the (non-degenerate) direct 
product of the irreducible representations (IR) of i and k. The individual orbitals 
will not be symmetry orbitals, but the {a} and {b} sets will be related by some 
operation of the molecular point-group, and so (unlike type (I)), will have the 
same set of  H P H F  eigenvalues. Reconstructing the H P H F  wavefunction in 
Eq.(6), we find only the direct products of ~b 1 with itself and 4)2 with itself, and so 
the full wavefunction is totally symmetrical. 

0II)  If  i and k are of different symmetry, but one or both of them belong to 
degenerate IR's, the situation resembles (II), except that q52 will now transform 
according to a degenerate, and possible reducible, representation. Thus the H P H F  
wavefunction will contain non-totally-symmetric components, and will not trans- 
form into itself under all the operations of the point-group. 

(IV) With an extensive mixing of different sets of orbitals i and k of different 
symmetries, q~l and ~b 2 may both be non-symmetrical. In this case the {a} and {b} 
sets will not be symmetry orbitals, nor will they be related by any symmetry opera- 
tion. The H P H F  wavefunction will be completely lacking in symmetry. 

The symmetry property of the initial trial function may be destroyed by round- 
ing errors in the SCF iteration, but otherwise this property will be carried over to 
the final H P H F  function, and so the above scheme may serve to classify the 
solutions. It will be seen that the number of solutions which are totally symmetrical 
(types (I) and (II)), is expected to be equal to the number of non-degenerate IR's 
of the molecular point-group. A completely unsymmetrical solution of type (IV) 
is only expected if it has the lowest energy, since otherwise it will converge on 
one of  the other types. Solutions of type (HI), which may be said 'to have partial 
symmetry, will be expected when the molecular point-group has degenerate IR's. 

These arguments allow us to understand the multiple solutions obtained in our 
calculations. Solutions of  type (I), where all orbitals are symmetry orbitals, were 
found for all molecules, being the ones numbered (2) for H20,  (3) for CO, and 
solutions presented for NH 3 and CH 4. Solutions (3) and (4) for H 2 0  are examples 
of type (II), where the {a} and {b} are not symmetry orbitals, although the wave- 
function is fully symmetrical. Thus solution (3) was obtained either by mixing the 
RHF lb2 orbital with the virtual 4ai to form the initial function, or the filled 3a~ 
with the virtual 262, so that q~2 has the symmetry B 2 . In solution (4) the symmetry 
of q52 is B1, and our discussion leads us to expect a third solution of this type, 
where ~b 2 has the symmetry A2. We attempted to find this solution by initial mixing 
of  the 1 b I filled orbital with the virtual 2b2, but if this solution exists, it appears to 
have a very shallow energy surface, with a minimum so little below the RH F  
energy, that the calculation would not converge. 

Solutions of type (III) are exemplified by numbers (1) and (2) in Table 3. In the 
first, obtained by mixing 5o- with the virtual 2re orbital, q52 has H symmetry, and 
in the second, from mixing l~z x with 2roy, 4)2 contains some A symmetry. In neither 
of these cases is the wavefunction completely symmetrical about the molecular 
axis. Solutions of  this type are also expected for NH 3 and CH4, but we failed to 
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find them, possibly because the symmetry of  the initial function was destroyed 
by rounding errors, so that the SCF procedure converged onto the lowest energy 
solutions. 

Our symmetry discussion, although throwing valuable light on the existence 
of multiple H P H F  solutions, and the way in which these are obtained from dif- 
ferent starting points, clearly cannot say anything about the relative energy of the 
solutions, or about their physical significance. Although some of  the higher 
energy solutions do seem to have a certain physical significance - for example 
number (1) for CO shows most correlation coming from the 5o lone-pair orbital - 
it may be argued in general that the physically interesting solution is that with the 
lowest energy, either with or without symmetry constraint. In all four cases 
studied here the lowest energy solution in which the wavefunction has the full 
symmetry of the molecule is of type (I): that is the orbitals are symmetry orbitals. 
This is understandable if the predominant correlation comes from electrons in the 
bonds. Thus in AH n molecules the {a} orbitals will have more density on the 
central atom and the {b} orbitals on the hydrogen atoms (or vice-versa), and this 
can be achieved without loosing the symmetry of the orbitals. The same applies 
to heteronuclear diatomic molecules such as CO, but this wilt not always be the 
case : in a homonuclear diatomic the orbitals will loose the centre of  symmetry, 
if the {a} and {b} sets are concentrated on different atoms. We might then expect 
a solution of type (II) to be lowest in energy, ~b 2 having X, symmetry. This is 
indeed the case for H2, mentioned in our previous paper [9]. 

Solutions of type (IV), where the wavefunction is not fully symmetrical, were 
found for three of  the molecules studied here, (H20 , NHa ,  and CO), and for BH, 
reported in [9]. The nature of these solutions seems to confirm the discussion of 
our previous paper [-9], where it was suggested that the H P H F  wavefunction may 
be quite good at describing correlation in a single pair of electrons, but less good 
for the simultaneous correlation of several pairs. In all the non-symmetrical 
solutions obtained, most of the correlation energy comes from a single pair of 
electrons. Thus in solution (I) for water, only one pair of orbitals differs appre- 
ciably between the {a} and {b} sets, the corresponding orbitals being: 

a ~ 0 . 6  H 2 ( l s ) - 0 . 6 0 ( 2 s )  + 1.00(2px) + 1.20(2pr  ) 

b~0 .2  H l ( l s ) +  1.7 H 2 ( l s ) - 0 . 6 0 ( 2 s )  +0.30(2py) .  

Clearly this pair of  orbitals is strongly correlated in the single bond O-H2, and 
this solution would be the most appropriate one for a potential surface where one 
O - H  bond was being dissociated. A similar solution was found for NH3,  and in 
solution (4) for CO, it can be seen that much more correlation comes from the 
In x than from the In r orbital. However, the factors which determine whether an 
unsymmetrical solution will exist must be rather subtle, since for CH4 the type (I) 
solution seems to have the lowest energy. 

4. Conclusions 

The aim of this work was to explore some of the features of the H P H F  wave- 
function, and of the method of calculation which we described previously. We 
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have found the calculations easy to perform, with no problems of convergence. 
However, the existence of multiple solutions makes the choice of starting point 
very important. In simple molecules, physical arguments combined with sym- 
metry considerations should allow the desired solution to be selected from the 
beginning, but it is by no means certain that this will always be the case with larger 
molecules. 

The correlation energy given by the HPHF method is disappointingly small, 
and the method clearly cannot compete in this respect with more sophisticated 
calculations [12-16]. However for certain problems, where the correlation of a 
single pair of electrons is important, the HPHF function may give a marked 
improvement over RHF, with only a moderate increase in computation. It may 
also be possible to find a similar method which is applicable to open-shell mole- 
cules and excited states, and this is something which we are at present considering. 
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